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Abstract
We introduce, in the spirit of Witten’s gauging of exterior differential, a
deformed Lie derivative that allows a geometrical interpretation of λ- and
µ-symmetries, in complete analogy with standard symmetries. The case of
variational symmetries (both for ODEs and for PDEs) is also considered in this
approach, leading to λ- and µ-conservation laws.

PACS numbers: 02.30.Hq, 02.30.Jr
Mathematics Subject Classification: 34C14, 70S10

1. Introduction

The importance of symmetries in the study of differential equations has been well known since
a long time back [4, 8, 15, 25, 26, 28]. In recent years, increasing attention was devoted to the
study of λ- and µ-symmetries for ODEs and PDEs respectively; we will not discuss here the
relevance of this new class of symmetries, referring to [5, 7, 9, 10, 20–23, 27] for more details
and applications. It should be stressed that λ- and µ-symmetries are not symmetries in the
proper sense (i.e. they do not map solutions into solutions); nevertheless they can be used to
perform symmetry reduction via exactly the same method used for standard symmetries, and
they can be interpreted in terms of nonlocal symmetries [5].

The aim of this paper is to give a geometrical interpretation of λ- and µ-symmetries in
terms of a deformation of the usual Lie derivative. In particular, following Witten’s idea ([29],
see also [11, 18]) of gauging the exterior differential operator with a function f , we define
the deformed Lie derivative Ldf

X = efL(ef X). By using a generalization of this deformed Lie
derivative, we recognize that λ- and µ-symmetries can be characterized in complete analogy
with standard symmetries by just replacing LX with the deformed Lie derivative Lµ

X, where µ

is a horizontal 1-form on J 1(M) satisfying suitable conditions (see below).
In particular we show that a vector field on J k(M) is the λ- or µ-prolongation of a vector

field on M if and only if, for any contact form ϑ in J k(M),Lµ

X(ϑ) is a contact form (we recall
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that the standard prolonged vector fields on J k(M) can be characterized by requiring that they
preserve the contact ideal; see e.g. [2, 15, 26]).

By using the deformed Lie derivative we clarify, from a geometrical point of view, how a
λ-symmetry for an ODE can be used to lower the order of the ODE (see [21, 27]). In fact, the
definition of a λ-prolonged vector field as a vector field X such that Lµ

X preserves the contact
ideal allows the construction of a complete system of invariants for X by derivation of lower
order invariants. By using this property, given a λ-symmetry X for an nth-order differential
equation �(x, u, u(n)) = 0 and a complete set of invariants {y,w,w1, . . . , w(n−1)} for X, the
original equation can be written in terms of these invariants as an (n − 1) th-order reduced
equation �̃(y,w,w(n−1)) = 0.

Finally, we give a definition of λ and µ variational symmetries in terms of the deformed
operator Lµ

X. Given a first-order regular Lagrangian L, we denote by � the corresponding
Poincaré–Cartan form [3, 12, 16, 17, 26]. By means of � we define a variational (λ- or)
µ-symmetry as a (λ- or) µ-prolonged vector field X on J 1(M) such that Lµ

X(�) is a contact
form (standard variational symmetries can be defined as prolonged vector fields X on J 1(M)

such that LX(�) is a contact form; see the proof of lemma 5 with λ = 0). In this geometrical
framework, we can easily associate with any (λ- or) µ-symmetry X for the variational problem
a (λ- or) µ-conservation law (see below and [6, 20] for the exact definition of this concept).
Moreover, we prove that our definition of λ and µ variational symmetries completely agrees
with the corresponding ones given in local coordinates in [6, 20].

An outline of the paper is as follows. In section 2, in order to fix notations, we collect
some basic definitions and preliminary results about jet bundles and differential equations,
together with definitions of λ- and µ-symmetries. In section 3 we introduce the deformed
operators Lµ

X and dµ, starting from the basic case and considering natural extensions useful
for later applications. In section 4 we show how the differential operator introduced in
section 3 can be used in order to define λ- and µ-symmetries and to perform reduction of
ODEs. Finally, in section 5 we analyze the variational case, both for ODEs and PDEs.

2. Preliminaries

In this section, in order to fix notations and for the convenience of the reader, we collect some
definitions and preliminary results about jet bundles and geometry of differential equations
(see, e.g., [8, 15, 25, 28]). Moreover we recall the definitions of standard symmetries and λ

(or µ)-symmetries, as given in [7, 9, 21].

2.1. Jet bundles and differential equations

Let us consider a fiber bundle (M, π0, B) in which we introduce local coordinates (xi, ua),
where i = 1, . . . , n and a = 1, . . . , q. We will denote by �(M) the set of local sections
of this bundle, by X (M) the set of vector fields on M and by �∗(M) the graded algebra of
differential forms on M. Finally, �k(M) will denote the set of k-forms on M. Similar notations
will be used for any fiber bundle. The bundle (M, π0, B) can be prolonged to the kth jet
bundle (J k(M), πk, B) with local coordinates

(
xi, ua, ua

J

)
, where J is a multi-index, with

|J | = 1, . . . , k. The total space of the jet bundle is also called the jet space, for short.
The jet space J k(M) is naturally equipped with the canonical contact forms that, in local

coordinates, read

ϑa
J := dua

J − ua
J,m dxm

with a = 1, . . . , q, |J | = 0, . . . , k −1. We denote by C the exterior ideal generated by ϑa
J , i.e.

the set of all the forms in �∗(J k(M)) that can be written as ρJ
a ∧ ϑa

J where ρJ
a ∈ �∗(J k(M))
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(here and in the following, Einstein’s summation convention on repeated multi-indices is
assumed). We will call C the contact ideal. We denote by D the distribution dual to the space
of contact 1-forms (see [2, 15]). As is well known, D is generated by ∂ua

I
with |I | = k and

Di := (∂/∂xi) + ua
J,i

(
∂
/
∂ua

J

)
,

where |J | = 1, . . . , k − 1. The vector field Di defines a first-order differential operator called
total derivative with respect to the independent variable xi .

A 1-form µ ∈ �1(J k(M)) is called horizontal if it annihilates all the vertical tangent
directions in J k(M). Thus, in local coordinates, a horizontal 1-form can be written as
µ = �i

(
x, ua, ua

J

)
dxi . With any 1-form ω on J k(M) is intrinsically associated a horizontal

form ωH on J k+1(M), called the horizontal component of ω, which is defined so that
ω = ωH + ϑ , where ϑ is a contact form on J k(M). Given a function F ∈ C∞(J k(M)),
we define the total differential DF of F as the horizontal component of its ordinary
exterior differential dF , i.e. DF = (dF)H . In terms of the total derivatives of F, we have
DF = (DiF ) dxi .

Given a section γ ∈ �(M), we can consider its kth order jet extension jk(γ ) ∈ �(J k(M)),
requiring that jk(γ ) coincides with γ on M and annihilates all the contact forms on J k(M).
Let � be a differential equation of order k:

� := F
(
xi, ua, ua

J

) = 0,

with |J | = 1, . . . , k. If � satisfies suitable regularity conditions (see e.g. [1, 2]), we can see
� as a submanifold of J k(M): in this case xi and ua are independent and dependent variables
respectively. A section γ ∈ �(M) is a solution of � iff its kth order jet extension satisfies
jk(γ ) ⊆ �.

2.2. Standard and µ-symmetries

Given a vector field X0 ∈ X (M) we define its kth order prolongation as the unique vector field
X ∈ χ(J k(M)) which reduces to X0 when restricted to M and which preserves the contact
ideal C, i.e. LX(ϑ) ∈ C for any ϑ ∈ C. If X0 and X are given in local coordinates by

X0 = ξ i(x, u)
∂

∂xi
+ ϕa(x, u)

∂

∂ua

X = X0 + �a
J

∂

∂ua
J

,

(2.1)

then the coefficients �a
J of X satisfy the prolongation formula:

�a
J,k = Dk�

a
J − ua

J,mDkξ
m, (2.2)

with |J | = 0, . . . , k − 1 and �b
0 = ϕb.

Given a kth order differential equation � := F
(
xi, ua, ua

J

) = 0, we say that a vector field
X0 ∈ χ(M) is a symmetry of � iff the kth order prolongation X of X0 satisfies X(F) = 0 on
F = 0.

In recent years a new class of symmetries, christened λ (or µ)-symmetries, for a differential
equation was introduced (see [9, 21]), sharing the useful properties of standard symmetries
for what concern reduction of ODEs and determination of invariant solutions for PDEs. The
notion of λ- and µ-symmetries is based on a different choice of the prolongation formula. In
particular, for a single ODE, Muriel and Romero [21] define the λ-prolongation of a vector
field X0 as a vector field X ∈ χ(J k(M)) of the form (2.1) whose coefficients satisfy the
following prolongation formula, depending on a smooth function λ ∈ C∞(J 1(M)):

�n+1 = (Dx + λ)�n − un+1(Dx + λ)ξ (2.3)
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(here we simply write un for Dn
xu and similarly for �n). This formula was generalized to the

case of PDEs in [7, 9]. In particular, if (M, π0, B) is a fiber bundle equipped with a horizontal
1-form µ = �idxi , we can define the kth order µ-prolongation of a vector field X0 ∈ χ(M)

as the unique vector field X ∈ χ(J k(M)) of the form (2.1) whose coefficients satisfy the
µ-prolongation formula:

�a
J,k = [Dk + �k] �a

J − ua
J,m [Dk + �k] ξm. (2.4)

Here, �b
0 = ϕb and �i satisfy the compatibility conditions

Di�j − Dj�i = 0. (2.5)

In terms of the horizontal 1-form µ, the compatibility conditions (2.5) can be written as
dµ ∈ C.

Note that if we consider µ ∈ �1(J 1(M)), we can guarantee that the µ-prolongation of a
Lie-point vector field on M is a proper vector field in each J k(M). On the other side, if we
consider µ ∈ �1(J r(M)) with r > 1, the µ-prolongation of X0 would be a generalized vector
field in each J k(M) with k > 0 even if X0 is a Lie-point vector field.

Given a kth order differential equation � := F
(
xi, ua, ua

J

) = 0, we say that a vector field
X0 ∈ χ(M) is a λ-symmetry (or a µ-symmetry in the case of PDEs) of � iff the kth order λ

(or µ)-prolongation X of X0 satisfies X(F) = 0 on F = 0.

3. The deformed operators dµ and Lµ

Deformed differential operators appeared in many parts of the geometric theory of differential
equations (see, e.g., [11, 18, 19, 29]). In this section, we define a deformation of the differential
operators d and L in the spirit of Witten’s gauging of the exterior derivative ([29], see also
[11, 18]).

3.1. The basic operators

We start by defining the deformed differential operators dµ and Lµ in the simplest case, where
we gauge the standard operators d and L by means of a function f ∈ C∞(M).

Definition 1. Let M be a differential manifold and f ∈ C∞(M). For any β ∈ �∗(M), we
define the deformed differential ddf by

ddf β := e−f d(ef β) = dβ + df ∧ β.

Lemma 1. The deformed exterior differential ddf is a first-order differential operator with
respect to the wedge product on differential forms, satisfying

ddf ◦ ddf = 0.

Proof. The proof is a straightforward computation based on the fact that d(df ) = 0 and
df ∧ df = 0. �

Following the same line of reasoning, we give the definition of the deformed Lie derivative
of a form β ∈ �∗(M) along a vector field X ∈ χ(M) as follows.

Definition 2. Let M be a differential manifold, f ∈ C∞(M), β ∈ �∗(M) and X ∈ χ(M).
Then we define the deformed Lie derivative Ldf

X by

Ldf

X β := e−fL(ef X)β = LXβ + df ∧ (X β).
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Lemma 2. The deformed Lie derivative Ldf

X satisfies

Ldf

X (β1 + β2) = Ldf

X β1 + Ldf

X β2

Ldf

X (β1 ∧ β2) = (
Ldf

X β1
) ∧ β2 + β1 ∧ (

Ldf

X β2
)

for any X ∈ χ(M) and β1, β2 ∈ �∗(M). Moreover, Ldf

X coincides with the usual Lie
derivative on functions.

Proof. The proof is an easy computation. �

It is now completely natural to extend definition 2 to the case of Lie derivative of vector
fields by the following.

Definition 3. Let M be a differential manifold, f ∈ C∞(M), and X, Y ∈ χ(M). Then

Ldf

X (Y ) := e−fL(ef X)Y = LXY − (Y df )X.

Lemma 3. The deformed Lie derivative Ldf

X satisfies

Ldf

X (Y β) = Ldf

X (Y ) β + Y
(
Ldf

X β
)

for any X, Y ∈ χ(M) and β ∈ �∗(M).

Proof. The proof is a straightforward computation and is left to the reader. �

The aim of the following theorem is to give an analogous of Cartan formula for the deformed
Lie derivative Ldf

X given by definition 2.

Theorem 1. Let M be a differential manifold, f ∈ C∞(M),X ∈ χ(M) and β ∈ �∗(M).
Then

(a) Ldf

X (β) = X dβ + ddf (X β)

(b) Ldf

X (dβ) = ddfLdf

X (β).

Proof. The point (a) follows directly from definitions 1 and 2. In order to prove (b) we apply
(a) to the form dβ and we find Ldf

X (dβ) = X d(dβ) + ddf (X dβ) = ddf (X dβ). On
the other hand, by lemma 1 and applying ddf to (a) we find ddf

(
Ldf

X β
) = ddf (X dβ); this

proves (b). �

3.2. Generalizations

In the previous subsection, we started with a function f ∈ C∞(M) in order to define the
deformed differential operators ddf and Ldf

X . On the other hand, it is immediate to recognize
that these differential operators depend on df rather than on f . So, into all previous definitions,
we can substitute df with a closed 1-form µ ∈ �1(M). Let us make this extension more
explicit by the following.

Definition 4. Let M be a differential manifold and µ a closed 1-form on M. Then, for any
β ∈ �∗(M) and X, Y ∈ χ(M), we define

dµβ := dβ + µ ∧ β

Lµ

Xβ := LXβ + µ ∧ (X β)

Lµ

X(Y ) := LXY − (Y µ)X.
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Theorem 2. Let M be a differential manifold and µ ∈ �1(M). Then for any X ∈ χ(M) and
β ∈ �∗(M), the following conditions are equivalents:

(a) dµ = 0

(b) dµ ◦ dµ = 0

(c) Lµ

X dβ = dµ
(
Lµ

Xβ
)
.

Proof. By explicit computation, we find

dµ(dµ(β) = dµ(dβ + µ ∧ β) = dµ ∧ β = 0
Lµ

X dβ = dµ(X dβ) = dµ
(
Lµ

Xβ
) − dµ(dµ(X β));

then the equivalence of (a)–(c) follows as X and β are arbitrary. �

3.3. The case of jet bundles

In order to apply our deformed differential operators to the study of symmetries of differential
equations (and in particular to λ- and µ-symmetries), we have to adapt the operators dµ and
Lµ

X to the framework of jet bundles. In particular, we require that the deformed operator dµ

defines a horizontal cohomology (see [13, 15, 26] and remark 2) and we get a weaker version
of theorem 2.

Let µ ∈ �1(J 1(M)) be a horizontal 1-form such that dµ ∈ C (the introduction of µ is
motivated by the µ-prolongation formula (2.4)). Given a local coordinate system

(
xi, ua, ua

i

)
on J 1(M), we can write µ = �i

(
xk, ua, ua

k

)
dxi with �i real functions satisfying the condition

Dk�i = Di�k . Analogous to the previous cases, we can give the following.

Definition 5. Let (M, π0, B) be a fiber bundle and let µ ∈ �1(J 1(M)) be a horizontal
1-form such that dµ ∈ C. Then, for any β ∈ �∗(J k(M)) and X, Y ∈ χ(J k(M)), we define

dµβ := dβ + µ ∧ β

Lµ

Xβ := LXβ + µ ∧ (X β)

Lµ

X(Y ) := LXY − (Y µ)X.

Note that in this case we cannot guarantee that dµ ◦ dµ = 0, because we only require that
dµ ∈ C. Then we can only prove a weaker version of theorem 2, given by the following.

Theorem 3. Let (M, π0, B) be a fiber bundle and let µ ∈ �1(J 1(M)) be a horizontal 1-form.
Then, for any β ∈ �∗(J k(M)) and X ∈ χ(M), the following conditions are equivalent:

(a) dµ ∈ C
(b) dµ(dµ(β)) ∈ C
(c) Lµ

X(dβ) − dµLµ

X(β) ∈ C.

(3.1)

Proof. We proceed by direct computation from definition 5 and we find

dµ(dµβ) = dµ(dβ + µ ∧ β) = (dµ + µ ∧ µ) ∧ β.

Then, as µ ∧ µ = 0 and β is an arbitrary k-form, this proves the equivalence of (a) and (b).
Moreover, to prove the equivalence of (b) and (c) we start again by definition 5 and write
Lµ

X(β) = X dβ + dµ(X β). Then we have

Lµ

X(dβ) = X d dβ + dµ(X dβ) = dµ(X dβ)
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and, by considering the dµ differential of Lµ

X(β), we find

dµ
(
Lµ

X(β)
) = dµ(X dβ) + dµ(dµ(X β).

Then Lµ

X(dβ) = dµ
(
Lµ

Xβ
) − dµ(dµ(X β)), and the thesis follows as X and β are arbitrary.

�

Remark 1. The choice made in definitions 2, 3 and 5 for the deformed Lie derivative Lµ

X is
motivated by the fact that there is a natural one-to-one correspondence between λ-symmetries
and a particular class of nonlocal symmetries [7, 21]. More explicitly, a vector field X is a
λ-symmetry of � if and only if the vector field Y = e

∫
µX is a (possibly) nonlocal symmetry of

� (here µ = λ dx and Dx(
∫

µ) = λ). This suggests the idea of considering the deformed Lie
derivative along a λ-symmetry as the standard Lie derivative along the corresponding nonlocal
symmetry. If we just do it, we find LY β = L(e

∫
µX)β = e

∫
µLXβ + e

∫
µµ∧ (X β)+ϑ, where

ϑ is a suitable contact form. Then LY β still depends on the (possibly) nonlocal function e
∫

µ,
and the introduction of the factor e− ∫

µ allows us to avoid any nonlocality in the definition
of Lµ

X.

Remark 2. If we consider the variational bi-complex obtained by a decomposition of the
de Rham complex in terms of the contact ideal C (see, e.g., [1, 13, 15, 25]), the exterior
differential d splits into two pieces d = dH + dV , where dH and dV are anti-commuting
co-boundary operators. In particular, the local coordinate expression for dH is given by

dH (f ) = Di(f ) dxi, dH (dxi) = 0, dH

(
ϑa

J

) = −ϑa
J,i ∧ dxi.

By means of the horizontal exterior differential dH , we can associate with dµ a cohomological
operator defined by

dµ

H β := dHβ + µ ∧ β ∀β ∈ �∗(J k(M)),

satisfying dµ

H

(
dµ

H (β)
) = 0 ∀β ∈ �∗(J k(M)). In this sense, we say that dµ defines a horizontal

cohomology.

4. Application to λ- and µ-symmetries

In this section, we show how λ- and µ-symmetries are the exact analogous of standard
symmetries if we substitute the usual Lie derivative with the deformed one.

4.1. Relations between Lµ

X and λ- or µ-prolongation

We start by showing how the notion of λ- and µ-prolonged vector fields can be expressed in
terms of the deformed Lie derivative. In particular, we will prove that the λ- and µ-prolonged
vector fields on J k(M) can be characterized as a vector field X on J k(M) such that Lµ

X

preserves the contact ideal on J k(M).

Theorem 4. Let (M, π0, B) be a fiber bundle and let µ ∈ �1(J 1(M)) be a horizontal 1-form
such that dµ ∈ C. Then a vector field X ∈ χ(J k(M)) is the λ- or µ-prolongation of a vector
field X0 ∈ χ(M) if and only if X reduces to X0 when restricted to M and

Lµ

X(ϑ) ∈ C ∀ϑ ∈ C.

Proof. If we consider the generators of the contact ideal C on J k(M) given in local coordinates
by ϑa

J = dua
J − ua

J,i dxi and the vector field X ∈ χ(J k(M)) of the form

X = ξ i ∂

∂xi
+ ϕa ∂

∂ua
+ �a

J

∂

∂ua
J

,
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a straightforward computation shows that the condition

Lµ

X

(
ϑa

J

) = LX

(
ϑa

J

)
+

(
X ϑa

J

)
µ ∈ C

leads to the λ-prolongation formula (2.3) (see also [7, 9, 21]) when the base manifold B is one
dimensional and to the µ-prolongation formula (2.4) when dim(B) > 1. �

The deformed Lie derivative can also be used to give the following alternative
characterization of λ- and µ-prolonged vector fields.

Theorem 5. Let (M, π0, B) be a fiber bundle and let µ ∈ �1(J 1(M)) be a horizontal
1-form such that dµ ∈ C. If D denotes the distribution generated by Di , then a vector field
X ∈ χ(J k(M)) is the λ- or µ-prolongation of a vector field X0 ∈ χ(M) if and only if X
reduces to X0 when restricted to M and

Lµ

X(Y ) ∈ D ∀Y ∈ D.

Proof. We just recall that Lµ

X(Di) = LX(Di) − (Di µ)X = LX(Di) − �iX and refer to
[9] (lemmas 2 and 4) for explicit computation. �

Remark 3. Given an equation � := F = 0 in J k(M) and a λ-symmetry of �, the deformed
Lie derivative along X is related (but not equivalent) to the standard Lie derivative along the
corresponding nonlocal symmetry in a suitable covering of �. In fact, the main result of [5]
guarantees that a λ-symmetry X for an equation F = 0 can be associated with a particular
nonlocal symmetry of the form

Y = ewX + C
∂

∂w

in the covering {F = 0, wx = λ} of the equation F = 0 (for a suitable function C in the
covering space). In this framework, we have the following relation between the standard Lie
derivative along Y in the covering space and the deformed Lie derivative along X in J k(M):

LY β = ewLµ

X(β) + LC∂/∂w
β.

4.2. λ-symmetries and reduction for ODEs

We now want to stress the role of the operator Lµ

X in the reduction of ODEs. We start by
briefly recalling what happens in the case of standard prolonged vector fields in the language
of total differentials. Let (M, π0, B) be a fiber bundle with a one-dimensional base, and let
X be a vector field on J k(M) which is the kth order prolongation of a vector field on M. If
F ∈ C∞(J k(M)) is a differential invariant for X (i.e. X(F) = 0), then LX(DF) ∈ C, where
DF denotes the total differential of F. In fact, by definition, DF = dF + ϑ , where ϑ is a
suitable contact form. Then

LX(DF) = LX(dF + ϑ) = d(LX(F )) + LX(ϑ) ∈ C
because LXd = dLX,LX(F ) = 0 and LX(ϑ) ∈ C since X is a prolonged vector field.

Given two differential invariants F1 and F2 (with Dx(Fi) �= 0) for a prolonged vector field
X, the corresponding total differentials are necessarily proportional (via a function H) as the
base manifold B of the fiber bundle is one dimensional; so we have DF1 = H(DF2), where
H = DxF1/DxF2. If we consider

LX(DF1) = LX[H(DF2)] = LX(H)(DF2) + HLX(DF2),

using LX(DF1) ∈ C and LX(DF2) ∈ C, we find LX(H) = X(H) = 0.
By just considering Lµ

X instead of LX, we can prove the following.
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Lemma 4. Let (M, π0, B) be a fiber bundle with a one-dimensional base, µ ∈ �1(J 1(M))

a horizontal 1-form and X ∈ χ(J k(M)) a kth order λ-prolonged vector field. If F is a
differential invariant for X, then

Lµ

X(DF) ∈ C.

Proof. Following the steps recalled above for the standard case, we write DF = dF + ϑ ,
where ϑ is a suitable contact form. Then

Lµ

X(DF) = Lµ

X(dF + ϑ) ∈ C
if and only if

dµ
(
Lµ

X(F )
)

+ Lµ

X(ϑ) ∈ C,

where we used Lµ

Xd − dµLµ

X ∈ C (see theorem 3). Now, recalling that Lµ

X(F ) = X(F) = 0
by hypothesis, and using theorem 4, we have the thesis. Note that in this case the condition
dµ ∈ C is automatically satisfied, as the base manifold B is one dimensional. �

Now we can prove the following theorem, showing that for a λ-prolonged vector field we
can construct a complete system of invariants by the derivation of lower order invariants.

Theorem 6. Let (M, π0, B) be a fiber bundle with a one-dimensional base manifold, µ ∈
�1(J 1(M)) a horizontal 1-form and X ∈ χ(J k(M)) a kth order λ-prolonged vector field.
If F1 and F2 are differential invariants for X such that Dx(Fi) �= 0, then DxF1/DxF2 is a
differential invariant for X.

Proof. As before, if we consider the total differentials DF1 and DF2, they are necessarily
proportional 1-forms (as the base manifold B of the fiber bundle is one dimensional), so we
have DF1 = H(DF2) where H = DxF1/DxF2. Then

Lµ

X(DF1) = Lµ

X[H(DF2)] = Lµ

X(H)(DF2) + HLµ

X(DF2)

and, as lemma 4 guarantees Lµ

X(DF1) ∈ C and Lµ

X(DF2) ∈ C, we find Lµ

X(H) = X(H) = 0.
�

Remark 4. The previous results can be extended to fiber bundles with an n-dimensional
base manifold B. In this case, we have to consider a horizontal 1-form µ satisfying dµ ∈ C.
Then, given a kth order µ-prolonged vector field X on J k(M) and a set of (n + 1) differential
invariants F1, . . . , Fn, Fn+1 of X, we can construct n new invariants. In particular, if F1, . . . , Fn

are independent invariant functions, we consider DFi as a contact-invariant base for the
1-forms on M (see [26]). Then DFn+1 = ∑n

i=1 Hi(DFi), and using the same technique as
before we can prove that X(Hi) = 0. Unfortunately, as explained in [26], this is not sufficient
to provide reduction for PDEs.

5. Variational λ- and µ-symmetries

The relation between standard symmetries of the Lagrangian and conservation laws is described
by the classical Noether theorem (see, e.g., [3, 12, 14, 24–26]). In this section, we consider
variational λ- and µ-symmetries for a first-order regular Lagrangian. In particular we give a
geometrical interpretation of the definitions of λ and µ variational symmetries given in [6, 20],
and we find the corresponding conservation laws by means of this geometrical framework. All
results for ODEs can be extended to the case of higher order Lagrangians by just considering
the corresponding Poincaré–Cartan form (see e.g. [17]). In the case of PDE some problem
could arise if we consider Lagrangians of order greater than 2, as in this case it is not possible
to define the corresponding Poincarè–Cartan n-form in a unique invariant way starting only
from the knowledge of the Lagrangian (see [16] and references therein).
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5.1. The case of ODEs

Given a fiber bundle (M, π0, B) with a one-dimensional base, let J 1(M) be the corresponding
first-order jet bundle, in which we introduce local coordinates

(
x, ua, ua

x

)
. If L : J 1(M) → R

is a first-order regular Lagrangian, we denote by

� = ∂L

∂ua
x

ϑa + L dx (5.1)

the Poincaré–Cartan 1-form associated with L (as usual ϑa = dua − ua
x dx are the contact

forms on J 1(M)).

Definition 6. Let µ = λ
(
x, ua, ua

x

)
dx be a horizontal 1-form on J 1(M). A vector field

X0 ∈ χ(M) is a variational λ-symmetry for the Lagrangian L iff its first-order λ-prolongation
X ∈ χ(J 1(M)) satisfies

Lµ

X(�) ∈ C.

A vector field X0 ∈ χ(M) is a divergence variational λ-symmetry for the Lagrangian L
iff its first-order λ-prolongation X ∈ χ(J 1(M)) satisfies

Lµ

X(�) − dµR ∈ C (5.2)

for a suitable function R ∈ C∞(M).

Lemma 5. Condition (5.2) of definition 6 is equivalent to

X(L) + L(Dx + λ)ξ = (Dx + λ)(R),

where X is the λ-prolongation of a vector field X0 on M.

Proof. Writing explicitly condition (5.2) for the vector field X = ξ∂x + ϕa∂ua + �a∂ua
x

and
the Poincaré–Cartan form � given by (5.1), we find

Lµ

X(�) − dµR =
[
X

(
∂L

∂ua
x

)
− ∂L

∂ua
ξ

]
ϑa − (

ϕa − ξua
x

) [
d

(
∂L

∂ua
x

)
− ∂L

∂ua
dx

]

+ d

[
∂L

∂ua
x

(
ϕa − ξua

x

)
+ Lξ

]
+

[
∂L

∂ua
x

(
ϕa − ξua

x

)
+ Lξ

]
λ dx − dR − λR dx ∈ C.

So, we have (
ξ

∂

∂x
+ ϕa ∂

∂ua
+ �a ∂

∂ua
x

)
(L) + L(Dx + λ)(ξ) = (Dx + λ)(R),

where �a := (Dx + λ)ϕa − ua
x(Dx + λ)(ξ), and we get the thesis by just recalling the

λ-prolongation formula (2.3) for the vector field X0 = ξ∂x + ϕa∂ua . �

Finally, we want to show that this characterization of (divergence) variational
λ-symmetries leads to an analogous of Noether’s theorem. We recall that in this geometrical
framework, a conservation law for an ODE � is a function P such that dP ∈ C on � [3, 15].
If we consider a system of Euler–Lagrange equations, the previous condition is equivalent to
requiring that DxP = 0 on the solutions of the Euler–Lagrange equations. We extend this
definition of conservation law to the case of deformed operators by the following.

Definition 7. A λ-conservation law for a given ODE � := F
(
x, ua, ua

n

) = 0 is a function P
such that dµP ∈ C on F = 0. In particular this means that Dx dµP = Dx(P ) + λP = 0
on F = 0.
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Now we can prove the analogous of Noether’s theorem for λ-symmetries: when expressed
in local coordinates, our result completely agrees with the conservation law found in [20].

Theorem 7. Let X0 be a divergence variational λ-symmetry for a first-order regular
Lagrangian L. If � denotes the Poincaré–Cartan 1-form associated with L, we have the
λ-conservation law

Dx(X0 � − R) + λ(X0 � − R) = 0. (5.3)

Proof. We recall that X0 is a divergence variational λ-symmetry iff its first-order λ-
prolongation X satisfies

Lµ

X� − dµR = X d� + dµ(X � − R) ∈ C (5.4)

for a suitable function R ∈ C∞(M). Recalling that on the solutions to the Euler-Lagrange
equations we have X d� = 0, we find (5.3) by just recalling that the form of � guarantees
X � = X0 �. �

5.2. The case of PDEs

The geometrical framework presented for ODEs in the previous subsection still holds in the
PDEs’ context, by just considering a suitable Poincaré–Cartan n-form that we still denote
by �. In particular, given a fiber bundle (M, π0, B) with an n-dimensional orientable base
manifold B, we consider the corresponding first-order jet bundle J 1(M) with local coordinates(
xi, ua, ua

i

)
. If L = L

(
xi, ua, ua

i

)
is a regular first-order Lagrangian, the corresponding

Poincaré–Cartan n-form is

� = ∂L

∂ua
i

ϑa ∧ �i + L�, (5.5)

where ϑa = dua − ua
i dxi are the contact forms on J 1(M),� = dx1 ∧ . . . dxn is the volume

form on the base manifold B and �i = ∂i �.
Now we can define a variational µ-symmetry by the following.

Definition 8. Let µ = �i

(
xk, ua, ua

k

)
dxi be a horizontal 1-form on J 1(M) satisfying dµ ∈ C

and � the Poincaré–Cartan form associated with L. A vector field X0 ∈ χ(M) is a variational
µ-symmetry for the Lagrangian L iff its first-order µ-prolongation X ∈ χ(J 1(M)) satisfies

Lµ

X(�) ∈ C. (5.6)

A vector field X0 ∈ χ(M) is a divergence variational µ-symmetry for the Lagrangian L
iff its first-order µ-prolongation X ∈ χ(J 1(M)) satisfies

Lµ

X(�) − dµρ ∈ C (5.7)

for a suitable (n − 1)-form ρ. If we write ρ = Ri�i + σ with σ ∈ C, it is an easy computation
(see lemma 5) to prove that condition (5.7) can be written, in local coordinates, as

X(L) + L(Di + �i)ξ
i = (Di + �i)R

i.

Finally we want to show that also in the case of variational PDEs, we can associate with
any variational µ-symmetries a µ-conservation law. Let us recall that a conservation law for
a PDE � can be defined as a (n − 1)-form π such that dπ ∈ C on � [3, 15]. Generalizing this
idea to the case of deformed differential operators, we can give the following.
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Definition 9. A µ-conservation law for a given PDE � := F
(
xi, ua, ua

J

) = 0 is a (n − 1)-
form π such that dµπ ∈ C on the solutions to �. In particular, this means that Di dµπ =
0 (i = 1, . . . , n) on the solutions to �.

Now we can prove the extension of Noether’s theorem to the case of PDEs.

Theorem 8. Let X0 be a divergence variational µ-symmetry for a first-order regular
Lagrangian L, and � be the Poincaré–Cartan n-form associated with L. Then the following
µ-conservation law holds:

Di dµ(X0 � − ρ) = 0. (5.8)

Proof. It is completely analogous to the proof of theorem 7. In particular, on the solution of
Euler–Lagrange equations the µ-conservation laws (5.8) explicitly read

Di

(
∂L

∂ua
i

(
�a − ua

kξ
k
)

+ ξ iL − Ri

)
+ �i

(
∂L

∂ua
i

(
�a − ua

kξ
k
)

+ ξ iL − Ri

)
= 0.

�
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